
NACA RM L.5311 3 1140 00035

RESEARCH MEMORANDUM

N78-78542

EXPERIMENTAL INVESTIGATION OF

LAMINAR-BOUNDARY-LAYER CONTROL ON AN AIRFOIL SECTION

EQUIPPED WITH SUCTION SLOTS LOCATED AT DISCONTINUITIES

IN THE SURFACE PRESSURE DISTRIBUTION

By Laurence K. Loftin, Jr., and Elmer A. Horton

Langley Aeronautical Laboratory Langley Field, Va.

Manaay Copy

CLASSIFIED DOCUMENT

This material contains information affecting the National Defense of the United States within the meaning 1.11. [1.10]
of the entionage laws, Title 18, U.S.C., Secs. 793 and 794, the transmission or revelation of which is any particle of manner to an unsuthorized person is prohibited by law.

NATIONAL ADVISORY COMMITTEE

FOR AERONAUTICS

WASHINGTON

December 15, 1953

-CONFIDENTIAL -

UNCLASSIFIED

UNCLASSIFIED

NACA RM L53J14

NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

RESEARCH MEMORANDUM

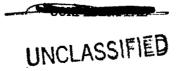
EXPERIMENTAL INVESTIGATION OF

LAMINAR-BOUNDARY-LAYER CONTROL ON AN AIRFOIL SECTION

EQUIPPED WITH SUCTION SLOTS LOCATED AT DISCONTINUITIES

IN THE SURFACE PRESSURE DISTRIBUTION

By Laurence K. Loftin, Jr., and Elmer A. Horton


SUMMARY

An experimental investigation has been made of a two-dimensional, 6.6-percent-thick, 6-foot-chord airfoil section equipped with suction slots for laminar-boundary-layer control. The airfoil section was designed to have favorable pressure gradients between the suction slots which were located at discontinuities in the airfoil surface pressure distribution. The upper surface contained nine slots, whereas the lower surface contained seven slots. The investigation indicated that the laminar boundary layer on this airfoil had the same extreme sensitivity to minute details of the model surface condition as has been found in other investigations of laminar-boundary-layer control.

INTRODUCTION

Extensive laminar boundary layers have been obtained at high Reynolds numbers by means of suction through discrete slots or porous surfaces in several wind-tunnel investigations (refs. 1 to 3). In these investigations, however, the attainment of extensive laminar boundary layers was found to be critically dependent upon minute details of the model surface condition. In an effort to decrease the sensitivity of the laminar boundary layer to minute surface imperfections, A. M. O. Smith of the Douglas Aircraft Co., Inc., designed an airfoil (designated the Douglas DESA-2) with a suction-slot arrangement which was markedly different from those employed in the investigations of references 1 and 3.

A short experimental investigation has been made in the Langley low-turbulence pressure tunnel of the Douglas DESA-2 airfoil. The purpose of the investigation was to determine whether the laminar boundary

TO AUTHORITY OF MISSIFIED WAS CHANGED IN AUTHORITY OF MISSIFIED WAS TO THE TOTAL CHANGED BY STATE OF THE TOTAL

layer on this model was materially less sensitive to surface conditions than in the investigations of references 1 to 3. The results of the present investigation are contained herein.

SYMBOLS

c	airfoil chord
2	slot span
v_o	free-stream velocity
u	local velocity
Q,	quantity flow removed through an individual slot
ν	kinematic viscosity
c_{Q}	flow coefficient for an individual slot, $Q/U_{\rm O}cl$
R	Reynolds number, $U_{o}c/\nu$

MODEL AND APPARATUS

Model

The airfoil section employed was 6.6 percent thick, had a design lift coefficient of 0.1, and was designated Douglas DESA-2. Ordinates of the airfoil are presented in table I. The airfoil was designed in such a way that the upper- and lower-surface pressure distributions contained nine and seven pressure discontinuities, respectively. A suction slot was located at each pressure discontinuity and the pressure gradients between slots were favorable. The theoretical pressure distribution about the airfoil is shown in figure 1 and a tabulation of the theoretical-pressure-distribution data is given in table II. The number and spacing of the slots and the magnitude of the pressure gradients between the slots were chosen only after very extensive laminar-boundary-layer stability calculations had been made. These calculations covered the Görtler type of instability as well as the usual two-dimensional type of instability. The design of the model was such that stability calculations indicated the boundary layer to be exceedingly stable at

Reynolds numbers of the order of 15.0×10^6 . These calculations also indicated a maximum Reynolds number of 50.0×10^6 or more for which full-chord laminar flow might be expected.

The model of the DESA-2 boundary-layer suction airfoil had a 6-foot chord and was constructed of aluminum alloy. The ordinates of the model when installed in the tunnel are believed to have been within a range from about ±0.001 to ±0.002 inch of the specified ordinates. The surfaces were polished to a very high degree of smoothness. A sketch of the two-dimensional model which shows the method of construction, slot locations, and a detail of the slot shape and surface contour in the vicinity of the slot is presented in figure 2. The slot widths employed in the tests as well as the slot locations and spans are given in table III. The possibility of contamination of the slotted portions of the airfoil by turbulence originating at the spanwise ends of the slots dictated the variation in slot span with slot position. As indicated in figure 2, the slot widths could be adjusted by the plate forming the rear lip of the slot. Each slot opened into a separate compartment within the model. These compartments were connected to a variable-speed blower by ducts leading to a valve and manifold arrangement by which the flow in each slot could be adjusted. Photographs of the model installed in the tunnel and the ducting, valve, and manifold arrangements are shown in figures 3 and 4, respectively.

The quantity flow removed from each slot was measured by a calibrated orifice meter which was located in the duct leading from the model to the manifold, and the total flow removed from all of the slots was measured by a calibrated orifice meter located in the duct leading from the manifold to the variable-speed blower. A flush orifice within the chamber measured the chamber static pressure. For the rates of flow involved in the investigation, the velocities within the slot chambers were so low that the measured static pressure was assumed equal to the total pressure.

The flush orifices used to measure the airfoil pressure distribution were formed by drilling 0.005- to 0.008-inch-dismeter holes in the surface of the model.

Wind Tunnel and Test Methods

The investigation was made in the Langley low-turbulence pressure tunnel. The two-dimensional model, when installed in the tunnel, completely spanned the 3-foot dimension of the 3-foot by $7\frac{1}{2}$ - foot test section. A complete description of the tunnel is contained in reference 4.

The position of transition on the surfaces of the model was determined through the use of a medical stethoscope. For this purpose, the stethoscope was attached to a total-pressure tube which could be inserted into the airstream through the tunnel wall at several locations. The noise levels associated with laminar and turbulent flow are markedly different so that the listener can easily distinguish between the two types of flow. Observations of the flow fluctuations within the boundary layer were made with a hot-wire anemometer. The hot wire was attached to a remotely controlled probe which permitted movement of the hot wire to different positions along and above the surface.

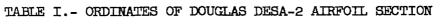
RESULTS AND DISCUSSION

The initial tests consisted of measurements of the surface pressure distribution and extent of laminar flow on the airfoil at 00, 0.50, and 1.00 angle of attack. These tests were made at a Reynolds number of 5.78×10^6 with the design flow removal in each slot. A comparison of the desired and actual flow removal from each slot is shown in figure 5 in which the flow coefficient corresponding to each slot is plotted against chordwise position. The results of the experimental surface-pressure-distribution measurements for 0° and 1.0° angle of attack are presented in figure 6. The value of the free-stream velocity employed in both the pressure coefficient and the flow coefficient has been corrected for tunnel blockage according to the method given in reference 4. A comparison of the experimental pressure distributions of figure 6 with the theoretical distribution shown in figure 1 indicates that the general character of the theoretical distribution was realized experimentally. Because of small inaccuracies in the contour of the surface and lips of the slots, however, small pressure peaks are evident in the vicinity of several of the slots. The lift coefficients corresponding to angles of attack of 0° and 1.0° were not measured, nor have the experimental pressure distributions been integrated to obtain the lift coefficients. Comparison of the theoretical and experimental pressure distributions, however, indicates that the design lift coefficient probably occurred between 0° and 1.0° angle of attack.

In the first tests at a Reynolds number of 5.78×10^6 , full-chord laminar flow was not realized. In an effort to find the causes of transition, extensive surveys were made with the stethoscope. In addition, some hot-wire measurements of the amplitude of laminar-boundary-layer oscillations at different points along the surface were made. The effects of variations in the suction quantities and angle of attack were also investigated. In general, it was found that transition was caused by the same type of minute surface imperfections as has been found to cause transition in other investigations. The laminar boundary layer was very

sensitive to small changes in slot and surface contour and to small bits of surface roughness which passed unnoticed by the naked eye and were found only as a result of stethoscopic or hot-wire surveys. The conclusion would, therefore, seem to be that no reduction in the sensitivity of the laminar boundary layer to small surface imperfections was shown by the DESA-2 boundary-layer suction airfoil as compared with other laminar-boundary-layer control schemes which have been investigated.

The maximum Reynolds number at which full-chord laminar flow was obtained was 5.78×10^6 . This result does not necessarily mean that extensive laminar flow could not have been obtained at higher Reynolds numbers. Any effort to obtain extensive laminar flows at higher Reynolds numbers, however, would have required the same type of painstaking attention to surface condition as described in connection with the investigation reported in reference 3. There seemed to be little point in following such a cleanup procedure in the present investigation since the question posed in the basic purpose of the investigation had already been answered.


CONCLUDING REMARKS

An experimental investigation has been made of a two-dimensional, 6.6-percent-thick, 6-foot-chord airfoil section equipped with suction slots for laminar-boundary-layer control. The airfoil section was designed to have favorable pressure gradients between the suction slots which were located at discontinuities in the airfoil surface pressure distribution. The upper surface contained nine slots, whereas the lower surface contained seven slots. The investigation indicated that the laminar boundary layer on this airfoil had the same extreme sensitivity to minute details of the model surface condition as has been found in other investigations of laminar-boundary-layer control.

Langley Aeronautical Laboratory,
National Advisory Committee for Aeronautics,
Langley Field, Va., September 30, 1953.

REFERENCES

- 1. Burrows, Dale L., and Schwartzberg, Milton A.: Experimental Investigation of an NACA 64A010 Airfoil Section With 41 Suction Slots on Each Surface for Control of Laminar Boundary Layer. NACA TN 2644, 1952.
- 2. Braslow, Albert L., Burrows, Dale L., Tetervin, Neal, and Visconti, Fioravante: Experimental and Theoretical Studies of Area Suction for the Control of the Laminar Boundary Layer on an NACA 64A010 Airfoil. NACA Rep. 1025, 1951. (Supersedes NACA TN 1905 by Burrows, Braslow, and Tetervin and NACA TN 2112 by Braslow and Visconti.)
- 3. Loftin, Laurence K., Jr., and Horton, Elmer A.: Experimental Investigations of Boundary-Layer Suction Through Slots To Obtain Extensive Laminar Boundary Layers on a 15-Percent-Thick Airfoil Section at High Reynolds Numbers. NACA RM L52D02, 1952.
- 4. Von Doenhoff, Albert E., and Abbott, Frank T., Jr.: The Langley Two-Dimensional Low-Turbulence Pressure Tunnel. NACA TN 1283, 1947.

Stations and ordinates given in percent of airfoil chord

Upper surface		Lower	surface
Station	Ordinate	Station	Ordinate
3.818 5.445 7.307 9.391 9.528 9.665	1.324 1.640 1.946 2.220 2.235 2.250	11.842 12.002 12.162 12.323 12.485 12.647	-2.532 -2.540 -2.550 -2.560 -2.570 -2.581

TABLE I.- ORDINATES OF DOUGLAS DESA-2 AIRFOIL SECTION - Continued

Upper surface		Lower	surface
Station	Ordinate	Station	Ordinate
9.80 ⁴ 9.94 ⁴ 10.085 10.227 10.370 10.51 ⁴ 10.659 10.805 10.95 ⁴ 11.156 11.424 11.582 11.741 14.370 17.156 20.085 20.27 ⁴ 20.462 20.651 20.840 21.029 21.400 21.601 21.793 22.195 22.400 21.606 22.812 23.018 23.224 26.568 29.98 ⁴ 30.835 31.050 31.267 31.484 31.700 31.917 32.1569 32.786 33.00 ⁴	2.264 2.278 2.292 2.305 2.350	12.810 12.973 13.135 13.800 16.562 19.481 19.668 19.856 20.422 20.802 20.802 20.935 21.721.562 21.957 21.7562 21.957 22.781 22.782 22.783 22.783 24.250 25.365 24.250 25.365 26.243 36.2684 36.2684 37.2667	-2.590 -2.6012 -2.6518 -2.6518 -2.9508

Upper	Upper surface		surface
Station	Ordinate	Station	Ordinate
53.440 53.458 53.658 53.658 53.880 53.880 53.976 53.976 53.55.797 53.55.797 53.55.797 53.55.797 53.681 53	3.544 3.540 3.557 3.509 3.500 3.	33.789 33.789 34.796 35.4796 37.479	-2.979 -2.962 -2.948 -2.936 -2.936 -2.938
53.209 53.444	3.286 3.277	53.489 53.730	-2.347 -2.336

TABLE I .- ORDINATES OF DOUGLAS DESA-2 AIRFOIL SECTION - Continued

Upper	surface	Lower	surface
Station	Ordinate	Station	Ordinate
53.678 53.678 53.912 54.146 54.379 54.612 54.379 55.770 55.770 56.248 57.694 57.694 57.694 58.893 58.84 58.893	3.268 3.258 3.258 3.237 3.216 3.203 3.190 3.174 3.156 3.154 3.094 3.050	53.970 54.210 54.245 54.689 55.405 55.643 55.56.627 57.623 56.627 57.623 57.126 57.378 58.612 57.623 57.126 57.378 58.612 57.938 58.612 68.612	-2.324 -2.310 -2.297 -2.283 -2.266 -2.248 -2.228 -2.207 -2.185 -2.163 -2.143 -2.123 -2.105 -2.089 -2.073 -2.089 -2.013 -2.088 -2.013 -2.088 -1.933 -1.739 -1.759 -1.669 -1.669 -1.669 -1.669 -1.669 -1.654 -1.566 -1.587 -1.566 -1.587 -1.586 -1.587 -1.586 -1.587 -1.587 -1.586 -1.587 -1.586 -1.587 -1.586 -1.587 -1.587 -1.5887
68.343 68.574 68.804	2.370 2.351 2.333 2.316	68.437 68.680 68.921	-1.387 -1.371 -1.355 -1.341

TABLE I.- ORDINATES OF DOUGLAS DESA-2 AIRFOIL SECTION - Continued

Upper	surface	Lower	surface
Station	Ordinate	Station	Ordinate
69.034 69.263 69.263 69.492 69.947 70.849 74.339 75.600 75.809 76.222 76.426 76.834 77.637 77.836 78.938 78.664 78.871 79.283 79.283 79.283 79.896 80.899 80.899 87.755 87.755 87.755 87.755 87.935 87.935 87.935 87.935 88.231	2.299 2.283 2.267 2.251 2.256 2.177 1.949 1.890 1.875 1.827 1.758 1.777 1.758 1.759 1.697 1.650 1.624 1.598 1.573 1.455 1.455 1.455 1.455 1.455 1.458 1.455 1.458	69.162 69.403 70.354 71.294 74.941 78.395 81.631 84.641 87.576 87.736 87.898 88.538 88.695 89.168 89.325 89.325 89.944 89.944 99.348 99.348 99.348 99.348 99.348 99.348 99.348 99.348 99.348	-1.328 -1.314 -1.268 -1.299 -1.999 -1.999 -1.835 -1.755 -1.728 -1.755 -1

TABLE I.- ORDINATES OF DOUGLAS DESA-2 AIRFOIL SECTION - Concluded

Upper surface			
Station	Ordinate		
88.547 88.702 88.856 89.012 89.171 89.332 89.492 89.651 89.809 89.966 90.122 90.276 90.430 90.582 90.733 90.883 91.032 91.180 91.760 93.891 95.712 97.211 98.393 99.264	0.786 .769 .750 .730 .709 .690 .673 .657 .642 .628 .614 .601 .589 .577 .565 .554 .543 .532 .493 .368 .274 .196 .119		
99.807 100	.015 0		

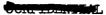


TABLE II.- THEORETICAL-PRESSURE-DISTRIBUTION DATA FOR DOUGLAS

DESA-2 AIRFOIL SECTION AT DESIGN LIFT

Upper surface		Lower surf	ace
Station, percent chord	$\left(\frac{u}{U_0}\right)^2$	Station, percent chord	$\left(\frac{u}{U_{o}}\right)^{2}$
0.157 .355 .633 .984 1.639 1.762 1.826 1.890 1.956 2.091 2.159 2.370 2.375 2.681 2.768 2.927 3.097 3.271 3.359 3.445 7.391 9.528 9.529 9.5	1.1029 1.1546 1.1922 1.2243 1.2674 1.2875 1.3028 1.3207 1.3248 1.3294 1.3319 1.3060 1.2381 1.1929 1.1837 1.1868 1.1964 1.2078 1.2184 1.2560 1.2884 1.3177	0.045 .018 .095 .244 .477 .796 1.199 1.679 2.230 3.537 5.108 8.952 9.493 9.769 9.908 10.189 10.330 10.472 10.615 10.904 11.568 11.568 11.568 11.568 11.568 11.568 11.684 11.842 12.485 12.485 12.810	0.6161 .1183 .0177 .3056 .6427 .7683 .8160 .8499 .8892 .9355 .9994 1.0617 1.1196 1.1675 1.1796

COLUMN TOWNS

TABLE II.- THEORETICAL-PRESSURE-DISTRIBUTION DATA FOR DOUGLAS

DESA-2 AIRFOIL SECTION AT DESIGN LIFT - Continued

Upper surface		Lower sur	face
Station, percent chord	$\left(\frac{u}{U_{Q}}\right)^{2}$	Station, percent chord	$\left(\frac{u}{v_o}\right)^2$
9.944	1.3230	12.973	
10.085		13.135	1.0958
10.227		13.800	1.1071
10.370	1.3243	16.562	1.1451
10.514	1.3278	19.481	1.1818
10.659	1.3246	19.668	
10.805	1.3071	19.856	
10.954	1.2426	20.044	
11.108	1.1837	20.233	1.1888
11.266	1.1759	20.422	
11.424	1.1811	20.612	
11.582	1.1848	20.802	
11.741	1.1877	20.993	1.1991
14.370	1.2341	21.185	1.1992
17.156	1.2733	21.377	1.2014
20.085	1.3122	21.569	1.2030
20.274		21.762	1.1977
20.462		21.957	1.1530
20.651		22.159	1.0853
20.840	1.3207	22.365	1.0661
21.029	1.720	22.573	1.0689
21.220	1.3236	22.781	1.0731
21.410	1.3264	22.989	1.0758
21.601	1.3294	23.198	1.07,0
21.793	1.3026	23.407	1.0816
21.991	1.2179	23.616	1.0010
22.195	_ , _	23.827	
	1.1779	1	
22.400 22.606	1.1809 1.1846	24.038	1.0904
		24.250	
22.812	1.1874	25.095	1.1008
23.018	1.1914	25.945	1.1128
23.224	1.1929	29.395	1.1537
26.568	1.2388	30.267	1.1642
29.984	1.2814	31.143	1.1722
30.835	1.2910	31.363	
31.050	*	31.582 31.802	
31.267	*		1 1010
31.484	1 7005	32.022	1.1818
31.700	1.3005	32.243	
31.917		32.463	
32.134		32.684	3 3007
32.351		32.904	1.1903
32.569	1.3110	33.125	1.1936
32.786		33.346	1.1964
33.004	1.3161	<i>33.5</i> 67	1.1973
33.222	1.3184	<i>3</i> 3.789	1.1692

TABLE II.- THEORETICAL-PRESSURE-DISTRIBUTION DATA FOR DOUGLAS

DESA-2 AIRFOIL SECTION AT DESIGN LIFT - Continued

Upper surface		Lower sur	face
Station, percent chord	$\left(\frac{u}{u_0}\right)^2$	Station, percent chord	$\left(\frac{u}{U_0}\right)^2$
	1.3218 1.3138 1.2432 1.1742 1.1755 1.1775 1.1779 1.1798 1.1894 1.1972 1.2321 1.2406 1.2495 1.2629 1.2654 1.2602 1.2629 1.2674 1.2486 1.1753 1.1720 1.1729 1.1755 1.1774 1.1811	1	1.0721 1.0632 1.0654 1.0667 1.0681 1.0735 1.0804 1.1126 1.1198 1.1289 1.1359 1.1425 1.1428 1.1470 1.1381 1.0818 1.0576 1.0564 1.0580 1.0599 1.0619 1.0696 1.0762 1.0998
48.461 52.268 53.209 53.444 53.678 53.912	1.1962 1.2241 1.2305	53.007 53.248 53.489 53.730 53.970 54.210	1.1050 1.1065 1.1080 1.1092 1.1103 1.1115

TABLE II.- THEORETICAL-PRESSURE-DISTRIBUTION DATA FOR DOUGLAS

DESA-2 AIRFOIL SECTION AT DESIGN LIFT - Continued

Upper surface		Lower sur	face
Station, percent chord	$\left(\frac{u}{U_0}\right)^2$	Station, percent chord	$\left(\frac{u}{U_{O}}\right)^{2}$
	1.2370 1.2410 1.2430 1.2448 1.2468 1.2468 1.1297 1.1297 1.1293 1.1293 1.1315 1.1428 1.1488 1.1707 1.1755 1.1798 1.1816 1.1850 1.1833 1.1814 1.1122 1.0523 1.0469 1.0494 1.0504	percent chord 54.445 54.689 54.928 55.167 55.643 55.882 56.128 56.877 57.126 57.623 56.877 57.623 58.118 58.366 58.612 58.858 59.840 63.938 64.171 64.882 65.116 65.584 65.584 66.281 66.978 67.428 67.709 67.952	1.1128 1.1139 1.1164 1.1170 1.1181 1.1177 1.0777 1.0157 1.0157 1.0155 1.0161 1.0165 1.0173 1.0197 1.0201 1.0207 1.0223 1.0239 1.0239 1.0247 1.0492 1.0576 1.0492 1.0576 1.0492 1.0576 1.0492 1.0532 1.0562 1.0576 1.0492 1.0572 1.0576 1.0492 1.0532 1.0532 1.0532 1.0532
68.111 68.343 68.574 68.804 69.034 69.263 69.492	1.0586	68.195 68.437 68.680 68.921 69.162 69.403 70.354	.9374 .9380 .9425 .9471

TABLE II. - THEORETICAL-PRESSURE-DISTRIBUTION DATA FOR DOUGLAS

DESA-2 AIRFOIL SECTION AT DESIGN LIFT - Continued

Upper surface		Lower sur	face
Station, percent chord	$\left(\frac{u}{v_o}\right)^2$	Station, percent chord	$\left(\frac{\overline{U}_{o}}{\overline{U}_{o}}\right)^{2}$
69.720 69.947 70.849 74.339 75.182 75.600 75.809 76.016 76.222 76.426 76.834 77.836 77.836 78.247 77.836 78.247 77.838 78.247 78.938 79.283 79.283 80.098 80.098 80.099 87.266 87.255 87.256 87.256 87.256 87.256 88.391 88.391 88.391 88.391 88.391 88.391 88.391 88.391 88.391 88.391	1.0654 1.0712 1.0904 1.0937 1.0941 1.0954 1.0966 1.0979 1.0983 1.0994 1.1017 1.1019 1.1029 1.1046 1.1067 1.1057 1.0975 1.0976 1.0975 1.0976 1.0977 1.0975 1.0096 1.0094 1.1019 1.1020 1.0134 1.0138 1.0159 1.0144 1.0138 1.0159 1.0144 1.0138 1.0159 1.0144 1.0178 1.0178	71.294 74.941 78.395 81.631 84.641 87.408 87.572 87.736 88.060 88.220 88.579 88.695 88.695 89.168 89.325 89.168 89.325 89.944 92.248 94.258 95.389 99.304 99.812 100	0.9508 .9683 .9837 .9976 1.0102 1.0217 1.0262 1.0276 1.0284 1.0294 1.0306 1.0074 .9805 .9807 .9809 .9811 .98159821 .9962 1.0064 1.0149 1.0213 1.0084 .9543 .8214

TABLE II. - THEORETICAL-PRESSURE-DISTRIBUTION DATA FOR DOUGLAS

DESA-2 AIRFOIL SECTION AT DESIGN LIFT - Concluded

Upper surface		
Station, percent chord	$\left(\frac{u}{U_0}\right)^2$	
89.171 89.332 89.492 89.651 89.809 89.966 90.122 90.276 90.430 90.582 90.733 90.883 91.032 91.180 91.760 93.891 95.712 97.211 98.393 99.264 99.807	0.8972 .8923 .8930 .89408949897489748987 .8987 .8993 .9042 .9113 .9134 .8782 .8290 .7524	

TABLE III.- SLOT DATA

Upper surface			
Slot number	Station, percent chord	Slot width, in.	Slot span, in.
1 2 3 4 5 6 7 8 9	2.5 11.0 21.9 33.85 44.9 56.0 66.95 78.0	1.5 × 10 ⁻³ 3.5 4 5 5.5 6.5 7	31.99 30.24 28.01 25.56 23.30 21.02 18.78 16.51 14.26
Lower surface			
10 11 12 13 14 15 16	10.92 22.0 33.85 44.9 55.9 66.9 88.85	2.5 3.5 4.5 5 5.5 7	30.26 27.99 25.56 23.30 21.04 18.78 14.28

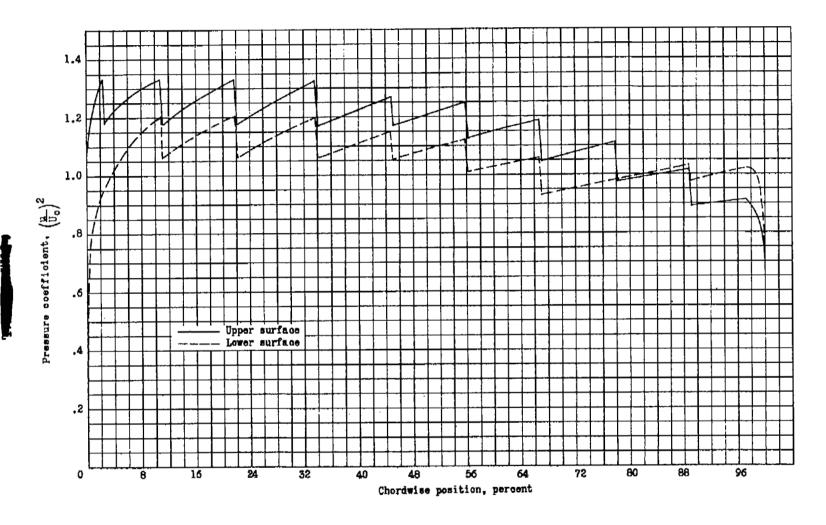


Figure 1.- Theoretical pressure distribution about Douglas DESA-2 airfoil section at design lift coefficient of 0.1.

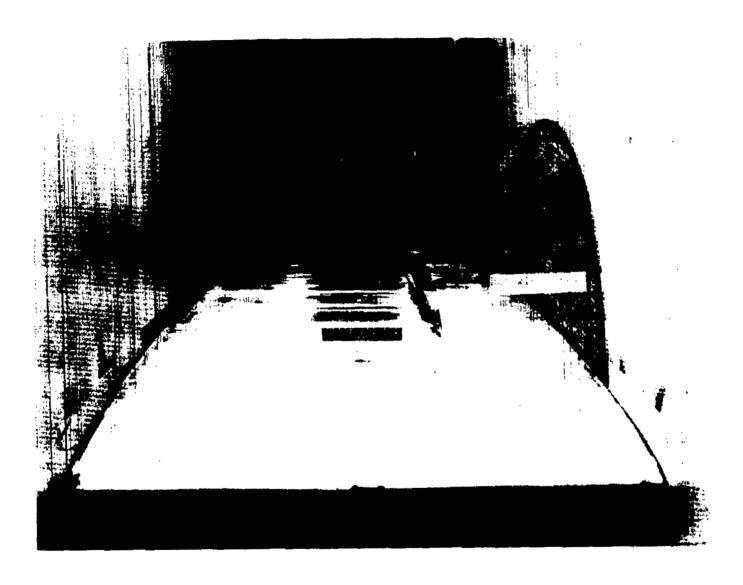



Figure 2.- Cross-sectional view of Douglas DESA-2 boundary-layer suction model showing method of construction and design of slots.

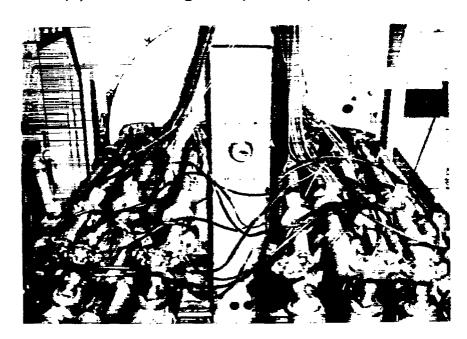
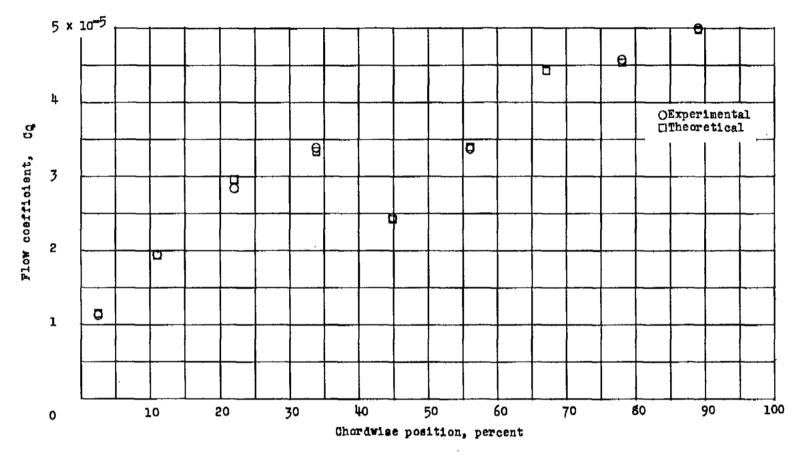

L-76321.1

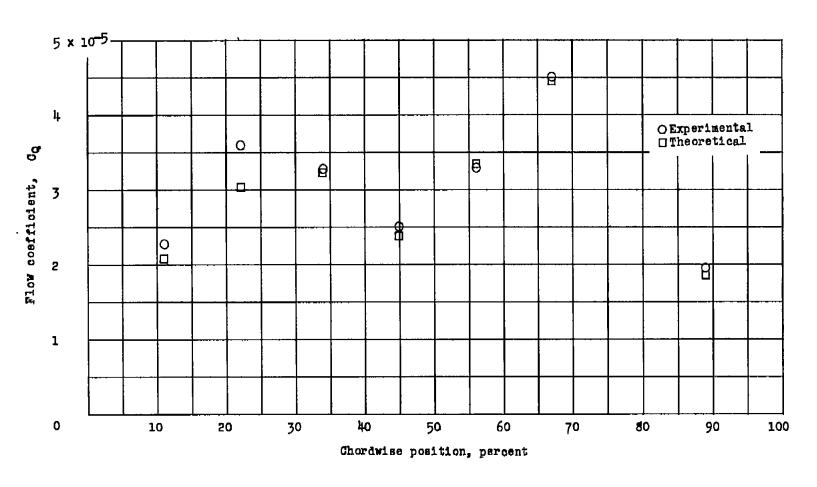
Figure 3.- Photograph of Douglas DESA-2 airfoil model mounted in Langley low-turbulence pressure tunnel.

L-76324.1

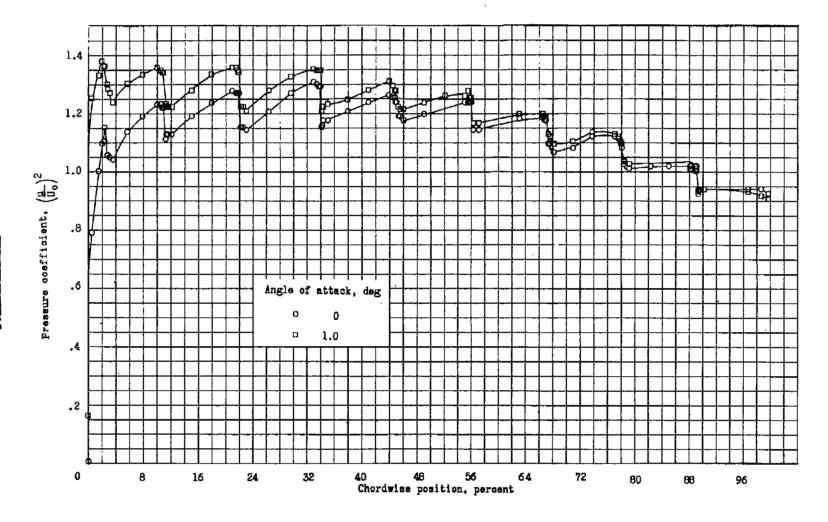

(a) View showing ducts, valves, and manifold.

L-76325.1

(b) View showing ducts, valves, and orifice plate holders.


Figure 4.- Photographs showing ducting, valve, and manifold arrangements for Douglas DESA-2 airfoil model.

(a) Upper surface.


Figure 5.- Theoretical and experimental distribution of flow coefficient for Douglas DESA-2 airfoil section. R = 5.78×10^6 .

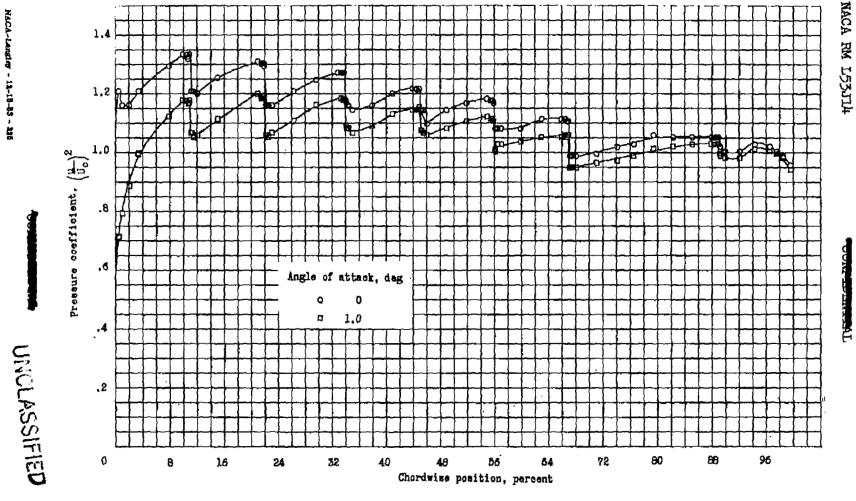

(b) Lower surface.

Figure 5 .- Concluded.

(a) Upper surface.

Figure 6.- Experimental pressure distribution about Douglas DESA-2 airfoil section at angles of attack of 0° and 1.0°. R = 7.8×10^6 .

(b) Lower surface.

Figure 6.- Concluded.